Silencing the Cochlear Amplifier by Immobilizing Prestin
نویسندگان
چکیده
Achieving the exquisite sensitivity and frequency selectivity of the mammalian ear requires active amplification of input sound. In this issue of Neuron, Dallos and colleagues demonstrate that the molecular motor prestin, which drives shape changes in the soma of mechanosensory hair cells, underlies mechanical feedback mechanisms for sound amplification in mammals.
منابع مشابه
Prestin's Role in Cochlear Frequency Tuning and Transmission of Mechanical Responses to Neural Excitation
The remarkable power amplifier [1] of the cochlea boosts low-level and compresses high-level vibrations of the basilar membrane (BM) [2]. By contributing maximally at the characteristic frequency (CF) of each point along its length, the amplifier ensures the exquisite sensitivity, narrow frequency tuning, and enormous dynamic range of the mammalian cochlea. The motor protein prestin in the oute...
متن کاملNormal Hearing Sensitivity at Low-to-Middle Frequencies with 34% Prestin-Charge Density
The mammalian outer hair cells (OHCs) provide a positive mechanical feedback to enhance the cochlea's hearing sensitivity and frequency selectivity. Although the OHC-specific, somatic motor protein prestin is required for cochlear amplification, it remains unclear whether prestin can provide sufficient cycle-by-cycle feedback. In cochlear mechanical modeling, varying amounts of OHC motor activi...
متن کاملPrestin-prestin and prestin-GLUT5 interactions in HEK293T cells.
The remarkable hearing sensitivity and frequency selectivity in mammals is attributed to cochlear amplifier in the outer hair cells (OHCs). Prestin, a membrane protein in the lateral wall of OHC plasma membrane, is required for OHC electromotility and cochlear amplifier. In addition, GLUT5, a fructose transporter, is reported to be abundant in the plasma membrane of the OHC lateral wall and has...
متن کاملPrestin-Based Outer Hair Cell Motility Is Necessary for Mammalian Cochlear Amplification
It is a central tenet of cochlear neurobiology that mammalian ears rely on a local, mechanical amplification process for their high sensitivity and sharp frequency selectivity. While it is generally agreed that outer hair cells provide the amplification, two mechanisms have been proposed: stereociliary motility and somatic motility. The latter is driven by the motor protein prestin. Electrophys...
متن کاملOn membrane motor activity and chloride flux in the outer hair cell: lessons learned from the environmental toxin tributyltin.
The outer hair cell (OHC) underlies mammalian cochlea amplification, and its lateral membrane motor, prestin, which drives the cell's mechanical activity, is modulated by intracellular chloride ions. We have previously described a native nonselective conductance (G(metL)) that influences OHC motor activity via Cl flux across the lateral membrane. Here we further investigate this conductance and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 58 شماره
صفحات -
تاریخ انتشار 2008